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Abstract

Results from classical power analysis (Brewer, 1972) suggest that a

researcher should not set, a m p (when p 4:0 in an a tem...E12ri fashion when

a study yields statistically significant results because of a resulting de-

crease in powers The purpose of the present report is to use Bayesian theory

in examining the validity of this generalisation. Using the t test and Baylis'

theorem we show that while the substitution of p for a (when p < 4 reducers

unconditional or simple power, it actually increases the conditional power of

the test--i.e., the probability that Hi is true given a statistically signi-

ficant result. Because of this, the substitution of g for a a posteriori

(when p <a), i.e., acting as though the value of a is equal to the obtained

p value, seems to be a harmless practice at worst, and on the positive side,

provides important information to the research consumer interested in the

validity of the alternative hypothesis (Hi) given the data of the study.
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The Effect of Substituting p for alpha On The Unconditional and
Conditional Powers of a Null Hypothesis Test

February 24, 1974

Recently, a good deal of attention has been focused on the area of power

analysis in the behavioral sciences. Cohen (1969), Overall (1969), TVersky

and Kahnman (1971), and Brewer (1972, 1973) among others, have strongly sug-

gested that the power (the probability of rejecting the null hypothesis (H0)

when the alternative hypothesis (HI) is true) of a statistical test should be

determined prior to conducting an experiment. The importance of this analysis

is suggested by Tversky and Kahnman (1971): (1)the results of a power analysis

may indicate that the study should not be conducted lnless the sample size is

substantially increased; (2)power analysis is necessary to the explanation

of negative results; (3)the results of power analysis provide an indication

of the probability of correctly rejecting Ho.

Cohen's concern with power analysis in the behavioral sciences has resulted

in the first easily manageable set of procedures and tables for the calvlation

of the power of statistical tests. The use of Cohen's tables to determine the

power of a test requires the researcher to combine a number of readily avail-

able pieces of information: (1)sample size, (2) alevel, and (3)effect size

(ES) which Cohen has defined as "the degree to which the phenomenon is present

in the population."

As part of this trend, Brewer (1973) has conducted an extensive analysis

of the statistical tests appearing in several educational and psychological

research journals during the last few years and found that the power in many

studies was inadequate. Brewer (1972) has discussed a number of procedures

for maximizing the power of statistical tests used in behavioral science re-

search. One of these is simply to avoid the "practice of taking a sample,
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calculating p (the probability of the statistic under H0) and then equating

this to a(when p< a)." He contends that the minimum sample size

necessary to detect a significant departure from the null condition at .05

IA altogether too small to detect the same-departure at a =.01 because change

in the size of a is directly related to change in the power of the test, He

provides the following as an example:

If a test is conducted with ni ala n2 am 50

and medium ES, then power is approximately
.70 for a.. .05 and .45 for a= .01 ...
It is clear that if power is to be maintained
at .70 for this sample and ES, then the test
is not significant at the .01 level even if
p < .01. The fact that p < .01 only allows
the researchers to reject Ho at the a m .05
level under these conditions. (Researchers
may, of course, equate p and a if they are

willing to take the resulting reduction in
power.) (p. 395)

Here, Brewer argues against substituting p for a (when p< a) strictly

because the adoption of such a decision rule reduces the power of the test.

While others(e.g., Cohen, 1973; Dayton, et al, 1973) have pointed out that

the power argument advanced by Brewer is inappropriate within the classical

(non - Bayesian) framework, a demonstration of the effects of such a policy

on the conditional power of a null hypothesis test seems useful at this time.

In the following discussion, Bayes' theorem and the t test are used for this

purpose.

A Bayesian Perspective

Overall (1969) has noted that particular concepts from Bayesian theory

have logical implications for the design of experiments. Bayes theorem

provides a formal statement of the probability of the null hypothesis being

true given a statistically significant result, and may be stated as:



P(Ho I D)

P(D Ho) -KV

P(D)

where P(Ho ID) is the probability of the Ho being true given a statistically

significant result (D); P(D I Ho) is the probability of significant result

given a true null hypothesis; P(H0) is the a priori, probability that the

null hypothesis is true and P(D) is the probability of a statistically

significant result when either the null or alternative hypothesis is true.

Overall defines a conditional alpha probability, P(Ho D), as "the pro-

bability that a result which is judged statistically significant has oc-

curred by chance rejection of a valid null hypothesis." He illustrates this

difference between the simple and conditional a levels by means of the follow-

ing example:

Consider the case of an i--3stigator who works
entirely within the area vnere the null hypothe-
sis is always true. If consistently employs
the proper classical statistical model with
a = .05 or a m .01, the probability will be only
.05 or .01 that he will reject a null hypothesis
when it is in fact valid; however, of the statis-
tically significant results reported by this hap-
less investigator, 100% will be due to chance.
This ad absurdum example illustrates the differ-
ence between simple alpha probabilities and con-
ditional alpha probabilities... (p. 286)

What is the practical significance of conditional alpha probability?

To answer this question, Overall cites a case which he claims exemplifies

psychiatric drug research. Typically, this area is characterized by small

sample size, low power tests, and unlikely treatment differences. Given

these conditions and the simple a level of .05, the conditional alpeps

level was calculated to be .643. Overall concludes that the analysis
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indicates that approximately two-thirds of the statistically significant

results will be type I errors!

In light of Overall's analysis, an examination of the ramifications of

substituting p for a seems in order. For while substituting p for a (when

p c a) clearly reduces unconditional or simple power,' this particular notion

of power is irrelevant once the data have been inspected. However, the effect

of this action on conditional power (i.e., the probability that Hi is true

given a statistically significant result) seems appropriate and is the focus

of the remainder of this discussion.

In terms of Bayes' theorem, conditional power is defined as:

1201111) P(Hi)
P (Hi) A

P (D)

where P(HlID) is the probability of a true alternative hypothesis given a statis-

tically significant result (D); P(111) is the a priori probability that the alter-

native hypothesis is true; P(D1111) is the probability of a significant result

(D) given that H
1

is true; P(D) is the probability of a statistically signifi-

cant result when either Ho or Hi is true--i.e., P(Hi) P(DIH0) P(H0).

We are now in the position to demonstrate the effects of substituting p

for a (when p cat) on the conditional and unconditional power of a statistical

test. The variables of interest are:

a. Effect Size (ES) - the degree to which the phenomenon exists
(Cohen, 1969). Cohen's small (.20), medium (.50) and large
(.80) ES were used.

b. Sample Size - small (n = 20), medium Om = Upend large
(n = 100) sample :sizes were used.

c. P(H0) the a priori probability of the null hypothesis
being true: small (.20), medium (.50), and large (.90)
prior probabilities were used.

It is recognized that the term "unconditional or simple" power is not

entirely appropriate since power is always conditional on a number of

factors. However, the term as used here refers to power in the classical

sense.
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Alpha Level - .05 was selected.

e. p-level - .01 was selected.

f. Statistical Test - Student's t test was selected.

For each combination of effect size, sample size, Fay, alpha level

and p-level, the conditional alpha probability P(E010) and the conditional

power probability P(11110) were calculated. The results of these calculations

are shown in Table 1. Notice that for a given ES, sample size, and F(R0),

the unconditional or simple power probability of the t test decreases when

simple a is reduced from .05 to .01 while the conditional power probability

of the test actually increases.

While attention is still focused on the table, two other relationships

may be noted:

a. As the effect size (ES) increases, the probability of a valid

null hypothesis given a significant result [120101D)] decreases

at each level of sample size and each level of the probability

of a valid Ho [P(H12 )] whereas the probability of a valid alter-

native hypothesis given a significant result [12(41113); increases

at each level of sample size and P010).

b. As sample size increases, the probability of a null hypothesis

given a significant result [P(H
o
ID)] decreases at each level of

effect size (ES) and each level of the probability of a valid

H [PCB
o
)) whereas the probability of a valid alternative

hypothesis given the data [P(11110)] increases at each level

of ES and P(B0).

Conclusions

It is clear that if p is substituted for a (when p 4 a) a posteriori,

then power in the classical sense is reduced. But, clearly, this unconditional
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power is no longer relevant once the data have been inspected. Following the

notions of Overall and others (e.g., Rozeboom, 1960), one must conclude that

if power must be calculated, only conditional power is relevant.

From the Bayesian perspective, substituting p for a (when p < a) has no

adverse effect on the measure of power and, on the positive side, provides the

consumer ,-,!:1; is interested in the tenability of H1 given the data with useful

information.
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